Palladium catalysed aryl enol ether synthesis from vinyl triflates

Michael C. Willis, ${ }^{\text {a }}{ }^{*}$ Dawn Taylor ${ }^{\text {a }}$ and Adam T. Gillmore ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. Fax: (44) 01225 386231; Tel: (44)
01225 386568; E-mail: m.c.willis@bath.ac.uk
${ }^{\mathrm{b}}$ Chemical Research and Development Department, Pfizer Global Research and Development, Sandwich, Kent, CT13 9NJ.

Supplementary Information

General Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded on JEOL 400 EX or Bruker AM-300 spectrometers at 400 MHz and 300 MHz respectively. Residual protic solvent $\mathrm{CHCl}_{3}\left(\square_{\mathrm{H}}=7.26 \mathrm{ppm}\right)$ or TMS ($\square_{\mathrm{H}}=0 \mathrm{ppm}$) were used as internal references. Coupling constants were measured in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ spectra were recorded in CDCl_{3}, unless otherwise stated, at 100 MHz or 75 MHz on JEOL 400 EX and Bruker AM-300 spectrometers respectively, using the resonance of $\mathrm{CDCl}_{3}\left(\square_{\mathrm{C}}=\mathrm{t}, 77 \mathrm{ppm}\right)$ as the internal reference. Infra red spectra were recorded in the range of $4000-600 \mathrm{~cm}^{-1}$ on a Perkin Elmer FT 1000 spectrometer with internal calibration. Mass spectra were carried out at the University of Wales Swansea (Finnigan MAT 900 XLT instrument).

Analytical thin layer chromatography was carried out using glass backed plates coated with Merck Kieselgel $60 \mathrm{GF}_{254}$ or aluminium backed plates coated with Merck G/UV 254 . Plates were visualised under UV light (at 254 nm) or by staining with potassium permanganate, vanillin or cerium ammonium molybdate followed by heating. Flash chromatography was carried out using either Merck 60 H silica or Merck Florisil ${ }^{\circledR}$. Samples were pre-absorbed on silica or used as saturated solutions in an appropriate solvent.

All the reactions were performed under a positive pressure of nitrogen or argon in oven or flame dried apparatus.

All vinyl triflate substrates were prepared by treating the corresponding ketones with trifluoromethanesulfonic anhydride and anhydrous sodium carbonate; all gave spectroscopic data identical to that reported in the literature. ${ }^{1,2,3}$

General procedure for the palladium catalysed preparation of aryl vinyl ethers

Palladium dibenzylideneacetone $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right](0.021 \mathrm{mmol}, 0.019 \mathrm{~g})$, bis-tertbutylbiphenylphosphine ($0.063 \mathrm{mmol}, 0.018 \mathrm{~g}$) and sodium tert-butoxide ($1.223 \mathrm{mmol}, 0.1176 \mathrm{~g}$) were added to a flask containing phenol ($1.049 \mathrm{mmol}, 0.099 \mathrm{~g}$). The flask was purged with nitrogen and the mixture taken up in dry toluene $(5 \mathrm{~mL})$ prior to the addition of triflate $(0.699 \mathrm{mmol})$. The reaction mixture was allowed to stir at $100^{\circ} \mathrm{C}$ for between 19-24 hours, after which time the reaction was cooled to room temperature, diluted with hexane (30 mL), filtered through celite and reduced in vacuo. The product was purified by flash column chromatography: neutral alumina; petrol:ethyl acetate to yield the products as oils in moderate to excellent yields (see Table 2).

Data for new compounds:

(4-t-butyl-cyclohex-1-enyloxy)-benzene (table 2, entry 1)

Colourless oil (95% conv., 85% yield, 0.136 g). $\square_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1679,1226$ and $1150 ; \square_{\mathrm{H}}(300$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.83(9 \mathrm{H}, \mathrm{s}), 1.21-1.33(2 \mathrm{H}, \mathrm{m}), 1.79-1.89(2 \mathrm{H}, \mathrm{m}), 1.95-2.21(3 \mathrm{H}, \mathrm{m}), 4.97(1 \mathrm{H}$, app. dt, $J 6,3), 6.86-7.01(3 H, m), 7.16-7.28(2 H, m) ; \square_{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.4,23.2,25.5,25.6$, 25.9, 42.2, 105.2, 116.6, 120.5, 127.4, 156.7, 157.7; m/z (EI) 230 (22\%, M), 173 (17\%), 94 (83%); (ES+) $\left[\mathrm{M}^{+}\right]$calc. 230.1671, measured 230.1675.

1-(4-t-butyl-cyclohex-1-enyloxy)-4-methyl-benzene (table 2, entry 2)

Pale amber oil (100% conv., 83% yield, 0.135 g). $\square_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1678,1220$ and $1100 ; \square_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.81(9 \mathrm{H}, \mathrm{s}), 1.15-1.34(2 \mathrm{H}, \mathrm{m}), 1.68-1.89(2 \mathrm{H}, \mathrm{m}), 2.00-2.18(3 \mathrm{H}, \mathrm{m}), 2.24(3 \mathrm{H}, \mathrm{s})$, $4.87(1 \mathrm{H}$, app. dt, $J 6,3), 6.80(2 \mathrm{H}$, app. d, $J 8), 7.02(2 \mathrm{H}$, app. d, $J 8)$; $\square_{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.6$, $25.4,26.8,27.8,28.2,44.4,54.1,105.8,119.2,130.1,138.0,146.6,148.0 ; m / z\left(\mathrm{CI}+, \mathrm{NH}_{3}\right) 245$ $(100 \%, \mathrm{M}+\mathrm{H}), 229,187,172,108$; (ES+) [M $\left.{ }^{+} \mathrm{H}\right]$ calc. 245.1900, measured 245.1894.

1-(4-t-butyl-cyclohex-1-enyloxy)-2-methyl-benzene (table 2, entry 3)

Colourless oil (60% conv., 34% yield, 0.110 g). $\square_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1679,1250$ and $1125 ; \square_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.82(9 \mathrm{H}, \mathrm{s}), 1.03-1.27(2 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{s}), 1.66-2.02(2 \mathrm{H}, \mathrm{m}), 2.08-2.27(3 \mathrm{H}, \mathrm{m})$, $4.62(1 \mathrm{H}$, app. dt, $J 6,2), 6.86(1 \mathrm{H}, \mathrm{d}, J, 9), 6.92(1 \mathrm{H}$, app. t, $J, 8), 7.03-7.15(2 \mathrm{H}, \mathrm{m})$; $\mathrm{C}_{\mathrm{c}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 16.5,24.6,25.3,27.8,28.3,32.6,44.5,103.3,119.7,123.4,126.9,129.9,131.2,153.6$, 154.1; $m / z\left(\mathrm{CI}+, \mathrm{NH}_{3}\right) 263\left(\mathrm{M}^{+} \mathrm{NH}_{4}\right), 246\left(\mathrm{M}^{+} \mathrm{H}\right), 245(\mathrm{M}), 187$; (ES+) [M+H] calc. 245.1900, measured 245.1899.

1-t-Buty-4-(4-t-butyl-cyclohex-1-enyloxy)-benzene (table 2, entry 4)

Amber oil (100% conv., 98% yield, 0.201 g). $\square_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1678,1231$ and $1190 ; \square_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.82(9 \mathrm{H}, \mathrm{s}), 1.23(9 \mathrm{H}, \mathrm{s}), 0.97-1.16(2 \mathrm{H}, \mathrm{m}), 1.65-1.90(2 \mathrm{H}, \mathrm{m}), 1.91-2.28(3 \mathrm{H}, \mathrm{m}), 4.93$ (1 H , app. dt, $J 5,3$), $6.83(2 \mathrm{H}$, app. d, $J 9), 7.23(2 \mathrm{H}$, app. d, $J 9)$; $\square_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.5,25.3$, $27.7,28.0,31.8,32.5,34.5,44.3,106.5,118.2,126.2,145.2,153.1,153.9 ; m / z(\mathrm{ES}) 286\left(5 \%, \mathrm{M}^{+}\right)$, 229, 150, 135; (ES+) [$\left.\mathrm{M}^{+} \mathrm{H}\right]$ calc. 287.2361, measured 287.2369.

1-t-Buty-3-(4-t-butyl-cyclohex-1-enyloxy)-benzene (table 2, entry 5)

Amber oil (100% conv., 86% yield, 0.108 g). $\square_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1678,1271$ and $1100 ; \square_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.84(9 \mathrm{H}, \mathrm{s}), 1.25(9 \mathrm{H}, \mathrm{s}), 1.35-1.36(2 \mathrm{H}, \mathrm{m}), 1.73-1.93(2 \mathrm{H}, \mathrm{m}), 1.94-2.09(1 \mathrm{H}, \mathrm{m}), 2.10-$ $2.28(2 \mathrm{H}, \mathrm{m}), 4.95(1 \mathrm{H}$, app. dt, $J 6,2), 6.73(1 \mathrm{H}$, ddd, $J 8,2,1), 6.95(1 \mathrm{H}, \mathrm{t}, J 2), 7.00(1 \mathrm{H}$, ddd, J $8,2,1), 7.16(1 \mathrm{H}, \mathrm{t}, J 8) ; \square_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.7,25.5,27.9,28.2,31.8,32.7,35.2,44.5,106.6$, $115.5,116.5,119.7,120.7,128.9,153.0,156.1 ; m / z\left(\mathrm{CI}+\mathrm{NH}_{3}\right) 287\left(100 \%, \mathrm{M}^{+} \mathrm{H}\right), 271,229,154$, 135; (ES+) [$\left.\mathrm{M}^{+} \mathrm{H}\right]$ calc. 287.2369, measured 287.2366.

1-(4-t-butyl-cyclohex-1-enyloxy)-4-methoxy-benzene (table 2, entry 6)

Amber oil (98\% conv., 46% yield, 0.083 g). $\square_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1678,1296$ and 1130, 2850; $\square_{\mathrm{H}}(300$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89(9 \mathrm{H}, \mathrm{s}), 1.21-1.38(2 \mathrm{H}, \mathrm{m}), 1.78-1.99(2 \mathrm{H}, \mathrm{m}), 2.01-2.30(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.79(3 \mathrm{H}$, s), $4.79(1 \mathrm{H}$, app. dt, $J 6,3), 6.82(2 \mathrm{H}$, app. d, $J 8), 6.95(2 \mathrm{H}$, app. d, $J 8)$; $\square_{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $24.6,25.3,27.8,28.3,32.6,44.5,56.0,103.8,114.7,121.0,149.6,154.6,155.5 ; ~ m / z$ (EI) 260 (12%, M), 203, 124, 109; (EI) [M^{+}] calc. 260.1771, measured 260.1770.

1-(4-t-butyl-cyclohex-1-enyloxy)-3-methoxy-benzene (table 2, entry 7)

Amber oil (100% conv., 37% yield, 0.066 g). $\square_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2875,1680,1263$ and 1040; \square_{H} (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.83(9 \mathrm{H}, \mathrm{s}), 1.00-1.15(2 \mathrm{H}, \mathrm{m}), 1.70-1.90(2 \mathrm{H}, \mathrm{m}), 1.95-2.27(3 \mathrm{H}, \mathrm{m}), 3.72(3 \mathrm{H}, \mathrm{s})$, $5.04(1 \mathrm{H}$, app. dt, $J 6,2), 6.47(1 \mathrm{H}, \mathrm{t}, J 2), 6.51(2 \mathrm{H}$, app. dd, $J 8,2), 7.12(1 \mathrm{H}, \mathrm{t}, J 9) ; \square_{\mathrm{c}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 24.6, 25.4, 27.8, 31.9, 32.6, 44.4, 55.7, 104.7, 108.1, 108.3, 110.9, 130.0, 157.0, 159.0, 163.0; $m / z(\mathrm{EI}) 261\left(\mathrm{M}^{+} \mathrm{H}\right), 260,203,124 ;(\mathrm{ES}+)\left[\mathrm{M}^{+} \mathrm{H}\right]$ calc. 261.1849, measured 261.1848.

1-[4-(4-t-butyl-cyclohex-1-enyloxy)-phenyl]-ethanone (table 2, entry 9)

Colourless oil (90% conv., 46% yield, 0.087 g). $\square_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1676,1267$ and 1127 ; $\square_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.85(9 \mathrm{H}, \mathrm{s}), 1.16-1.41(2 \mathrm{H}, \mathrm{m}), 1.71-1.93(2 \mathrm{H}, \mathrm{m}), 1.96-2.30(3 \mathrm{H}, \mathrm{m}), 2.49(3 \mathrm{H}, \mathrm{s})$, $5.22(1 \mathrm{H}$, app. dt, $J 6,2), 6.93(2 \mathrm{H}$, app. d, $J 9), 7.86(2 \mathrm{H}$, app. d, $J 9)$; $\square_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.6$, $25.6,27.7,27.8,28.6,32.7,44.3,111.4,117.1,130.6,130.6,131.4,151.4,161.2,196.0 ; \mathrm{m} / \mathrm{z}$ (CI+, $\left.\mathrm{NH}_{3}\right), 290\left(\mathrm{M}^{+} \mathrm{NH}_{4}\right), 273,219,216,173,154,137$; (EI) [M $\left.{ }^{+}\right]$calc. 272.1771, measured 272.1768.

1-[3-(4-t-butyl-cyclohex-1-enyloxy)-phenyl]-ethanone (table 2, entry 10)

Yellow oil (90% conv., 60% yield, 0.113 g). $\square_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1688,1260$ and $1110 ; \square_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.83(9 \mathrm{H}, \mathrm{s}), 1.22-1.40(2 \mathrm{H}, \mathrm{m}), 1.72-1.91(2 \mathrm{H}, \mathrm{m}), 1.94-2.26(3 \mathrm{H}, \mathrm{m}), 2.52(3 \mathrm{H}, \mathrm{s}), 4.99$ (1H, app. dt, $J 6,2$), $7.12(1 \mathrm{H}$, ddd, $J 8,2,1), 7.32(1 \mathrm{H}$, app. t, $J 8), 7.48(1 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}$, app. d, $J 8) ; \square_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.6,25.5,27.69,27.85,28.03,32.7,44.4,108.2,118.2,122.7,123.5$, 129.7, 138.7, 152.7, 156.8, 196.0; $m / z\left(\mathrm{CI}+\mathrm{NH}_{3}\right) 290\left(\mathrm{M}^{+} \mathrm{NH}_{4}\right), 273$; (ES+) [M+H] calc. 273.1849, measured 273.1851.

[3-(4-t-butyl-cyclohex-1-enyloxy)-phenyl]-dimethylamine (table 2, entry 12)

Amber oil (90\%conv., 45% yield, 0.875 g). $\square_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2815,1679,1232$ and $1148 ; \mathrm{\square}_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.82(9 \mathrm{H}, \mathrm{s}), 1.15-1.33(2 \mathrm{H}, \mathrm{m}), 1.71-1.92(2 \mathrm{H}, \mathrm{m}), 1.94-2.33(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.86(6 \mathrm{H}$, s), $4.99(1 \mathrm{H}$, app. dt, $J 6,3), 6.25-6.32(2 \mathrm{H}, \mathrm{m}), 6.38(1 \mathrm{H}$, app. d, $J 9), 7.07(1 \mathrm{H}$, app. t, $J 8)$; \square_{c} ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 24.6, 25.4, 27.8, 28.1, 32.6, 41.0, 44.4, 103.6, 106.8, 107.3, 129.7, 142.5, 152.5,
157.5; $m / z\left(\mathrm{CI}+, \mathrm{NH}_{3}\right) 299\left(\mathrm{M}^{+} \mathrm{NH}_{4}\right), 274\left(\mathrm{M}^{+} \mathrm{H}\right), 216,154,137$; (EI) $\left[\mathrm{M}^{+}\right]$calc. 273.2087, measured 273.2086.

1-(4-t-butyl-cyclohex-1-enyloxy)-4-nitro-benzene (table 2, entry 13)

Amber oil (95% conv., 60% yield, 0.115 g). $\square_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1690,1590,1342,1250$ and $1110 ; \square_{\mathrm{H}}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $0.85(9 \mathrm{H}, \mathrm{s}), 1.21-1.41(2 \mathrm{H}, \mathrm{m}), 1.77-1.97(2 \mathrm{H}, \mathrm{m}), 1.98-2.24(3 \mathrm{H}, \mathrm{m}), 5.31$ (1 H , app. dt, $J 6,3$), $6.96(2 \mathrm{H}$, app. d, $J 10), 8.12(2 \mathrm{H}$, app. d, $J 10)$; $\square_{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.6$, $25.6,27.8,28.5,32.7,44.2,113.1,116.9,126.0,151.0,152.0,162.5 ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}+, \mathrm{NH}_{3}\right) 293\left(\mathrm{M}^{+} \mathrm{NH}_{4}\right)$, 276, 260, 246, 230, 172, 154; (ES+) $\left[\mathrm{M}^{+} \mathrm{NH}_{4}\right]$ calc. 293.1860, measured 293.1860.

1-(4-t-butyl-cyclohex-1-enyloxy)-4-chloro-benzene (table 2, entry 14)

Amber oil (75% conv., 50% yield, 0.094 g). $\square_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1680,1268$ and $1125 ; \square_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.84(9 \mathrm{H}, \mathrm{s}), 1.15-1.34(2 \mathrm{H}, \mathrm{m}), 1.72-1.89(2 \mathrm{H}, \mathrm{m}), 1.95-2.26(3 \mathrm{H}, \mathrm{m}), 4.98(1 \mathrm{H}, \mathrm{app} . \mathrm{dt}, J$ $6,3), 6.85(2 \mathrm{H}$, app. dt, $J 8), 7.20(2 \mathrm{H}$, app. dt, $J 8) ; \square_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.6,25.5,27.8,28.0$, $31.9,44.4,107.7,120.0,129.5,134.5,152.0,158.0 ; m / z\left(\mathrm{CI}+\mathrm{NH}_{3}\right) 267\left(\mathrm{M}^{+} \mathrm{H},{ }^{37} \mathrm{Cl}\right), 265\left(\mathrm{M}^{+} \mathrm{H}\right.$, $\left.{ }^{35} \mathrm{Cl}\right)$; (EI) $\left[\mathrm{M}^{+}\right]\left({ }^{35} \mathrm{Cl}\right)$ calc. 264.1275, measured 264.1278.

1-(4-t-butyl-cyclohex-1-enyloxy)-2-fluoro-benzene (table 2, entry 15)

Amber oil ($>95 \%$ conv., 85% yield, 0.148 g). $\square_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1683,1120$ and 1260,$1160 ; \square_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.81(9 \mathrm{H}, \mathrm{s}), 1.19-1.39(2 \mathrm{H}, \mathrm{m}), 1.64-1.90(2 \mathrm{H}, \mathrm{m}), 1.92-2.33(3 \mathrm{H}, \mathrm{m}), 4.75(1 \mathrm{H}$, app. dt, $J 6,2), 6.91-7.10(4 \mathrm{H}, \mathrm{m}) ; \square_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.6,25.3,27.9,28.2,32.7,44.4,104.0$,
116.8, 122.1, 124.2, 124.4, 147.0, 153.7; m/z (CI+, $\left.\mathrm{NH}_{3}\right) 249\left(\mathrm{M}^{+} \mathrm{H}\right) ;$ (EI) $249\left(\mathrm{M}^{+} \mathrm{H}\right), 248,191$, 112, 95, 93; (ES+) [$\left.\mathrm{M}^{+} \mathrm{H}\right]$ calc. 249.1649, measured 249.1652.

References

1. (a) A. G. Martinez, A. Herrera, E. Teso, A. Garcia, J. Osio, L. Pargada, R. Unanue, L. R. Subramanian and M. Hanack, J. Heterocycle Chem., 1988, 25, 1237-1241; (b) A. D. Wentworth, P. Wentworth, U. F. Mansoor and K. D. Janda, Org. Lett., 2000, 2, 477-480.
2. L. Luan, J. S. Song and R. M. Bullock, J. Org. Chem., 1995, 60, 7170-7176.
3. (a) K. Pal, Synthesis, 1995, 1485-1487; (b) G. T. Crisp and M. G. Gebauer, Tetrahedron, 1992, 48, 3541.
